Further Inequalities Associated with the Classical Gamma Function

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Further Inequalities for the Gamma Function 599

For X > 0 and k > 0 we present a method which permits us to obtain inequalities of the type (it + a)x_l < T(k + \)/T(k + 1) < (k + ß)x'x, with the usual notation for the gamma function, where a and ß are independent of k. Some examples are also given which improve well-known inequalities. Finally, we are also able to show in some cases that the values a and ß in the inequalities that we obtain ...

متن کامل

Inequalities for the Gamma Function

We prove the following two theorems: (i) Let Mr(a, b) be the rth power mean of a and b. The inequality Mr(Γ(x), Γ(1/x)) ≥ 1 holds for all x ∈ (0,∞) if and only if r ≥ 1/C − π2/(6C2), where C denotes Euler’s constant. This refines results established by W. Gautschi (1974) and the author (1997). (ii) The inequalities xα(x−1)−C < Γ(x) < xβ(x−1)−C (∗) are valid for all x ∈ (0, 1) if and only if α ≤...

متن کامل

Inequalities for Gamma Function Ratios

Write R(x, y) = Γ(x + y) Γ(x). Inequalities for this ratio have interesting applications, and have been considered by a number of writers over a long period. In a Monthly article [7], Wendel showed that x(x + y) y−1 ≤ R(x, y) ≤ x y for 0 ≤ y ≤ 1. (1) Wendel's method was an ingenious application of Hölder's inequality to the integral definition of the gamma function. Note that both inequalities ...

متن کامل

Some inequalities for the gamma function

In this paper are established some inequalities involving the Euler gamma function. We use the ideas and methods that were used by J. Sándor in his paper [2].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Analysis and Number Theory

سال: 2016

ISSN: 2333-1100

DOI: 10.12691/tjant-3-4-5